
고려대학교
프로그램 자동 수정 연구 소개

오학주

고려대학교 정보대학 컴퓨터학과

11 Feb 2022 @ERC Workshop, Jeju

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

SSSNNUSSSNNU

KKUKKKUUYYoonnsseeii

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

SSSSSSNNNNUUSSSSNNNU

KKKUUUKKKKKKKKUUUYYYYYoooonnnnssseeeiii

이공계이

인문문계계

대대병병원고대병원

기타타

• Members: 10 PhD and 6 MS students

• Research areas: programming languages (PL), software engineering
(SE), software security

• program analysis and testing

• program synthesis and repair

• Publication: top-venues in PL, SE, and Security:

• PL: POPL(’22),PLDI(’20),OOPSLA(’15,’17a,’17b,’18a,’18b,’19,’20)

• SE: ICSE(’17,’18,’19,’20,’21’22a,’22b), FSE(’18,’19,’20,’21), ASE(’18), ISSTA(’20)

• Security: IEEE S&P(’17,’20), USENIX Security(’21)

http://prl.korea.ac.kr

소프트웨어 분석 연구실@Korea Univ.

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

…

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

…

정적 분석

검증(SMT)

콘콜릭

기호 실행

퍼징

…

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

…

정적 분석

검증(SMT)

콘콜릭

기호 실행

퍼징

…

의미 오류

기능 오류

보안 오류

구문 오류

정형 명세

…

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

…

정적 분석

검증(SMT)

콘콜릭

기호 실행

퍼징

…

의미 오류

기능 오류

보안 오류

구문 오류

정형 명세

…

정적 분석

기호 실행

코드 합성

코드 마이닝

…

기계 학습

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

…

정적 분석

검증(SMT)

콘콜릭

기호 실행

퍼징

…

의미 오류

기능 오류

보안 오류

구문 오류

정형 명세

…

정적 분석

기호 실행

코드 합성

코드 마이닝

…

기계 학습

…

연구 방향: 오류 자동 검출 & 수정

3

오류 검출 기술 오류 수정 기술

…

정적 분석

검증(SMT)

콘콜릭

기호 실행

퍼징

…

의미 오류

기능 오류

보안 오류

구문 오류

정형 명세

…

정적 분석

기호 실행

코드 합성

코드 마이닝

…

기계 학습

…
Today

목표: “실용적” 오류 자동 수정 기술

4

자동

정교 신속

목표: “실용적” 오류 자동 수정 기술

4

자동

정교 신속

“Push-button” solution
(esp., no test cases)

목표: “실용적” 오류 자동 수정 기술

4

자동

정교 신속

“Push-button” solution
(esp., no test cases)

High fix rate &
No false patches

목표: “실용적” 오류 자동 수정 기술

4

자동

정교 신속

“Push-button” solution
(esp., no test cases)

High fix rate &
No false patches

Fast enough for
real-world SW

목표: “실용적” 오류 자동 수정 기술

4

자동

정교 신속

“Push-button” solution
(esp., no test cases)

High fix rate &
No false patches

Fast enough for
real-world SW

=> 주요 프로그래밍 언어 / 오류에 특화

연구 진행 상황

• C/C++ 메모리 오류 자동 수정 [FSE’18, ICSE’20]

• Java 널 포인터 오류 자동 수정 [ICSE’22]

• Python 타입 오류 자동 수정 (in progress)

• Solidity 보안 오류 자동 수정 (in progress)

• …

• OCaml 프로그래밍 과제 자동 수정 [OOPSLA’18, OOSLA’19, FSE’21]

5

메모리 관리 오류

6

• 메모리 관리를 수동으로 하는 언어(e.g., C/C++)에서 발생:

• Memory-leak (CWE-401): 메모리를 너무 늦게 해제

• Use-after-free (CWE-416): 메모리를 너무 빨리 해제

• Double-free (CWE-415): 메모리를 여러번 해제

p = malloc(1);
...
return;

Memory-Leak

p = malloc(1);
...
free(p);
...
free(p);

Double-Free

p = malloc(1);
...
free(p);
...
use(p);

Use-After-Free

메모리 관리 오류

• C/C++ 프로그램에서 가장 빈번하게 발생

7

Repository #commits ML DF UAF Total *-overflow

linux 721,119 3,740 821 1,986 6,363 5,092

openssl 21,009 220 36 12 264 61

numpy 17,008 58 2 2 59 53

php 105,613 1,129 148 197 1,449 649

git 49,475 350 19 95 442 258

• 소프트웨어 결함의 주요 원인이지만 정확한 수정이 까다로움

사례 1: Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

사례 1: Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

메모리 할당

사례 1: Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

메모리 할당

메모리 해제

사례 1: Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

메모리 할당

메모리 해제

메모리 중복 해제
(double-free)

사례 1: Linux Kernel

8

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

메모리 할당

메모리 해제

메모리 중복 해제
(double-free)

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

9

사례 1: Linux Kernel

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

수동 디버깅의 문제 1:
오류가 제거되었는지 확신하기 어려움

9

사례 1: Linux Kernel

9개월 후에 다시 오류 수정을 시도

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

10

사례 1: Linux Kernel

9개월 후에 다시 오류 수정을 시도

수동 디버깅의 문제 2:
오류 수정 과정에서 새로운 오류가 발생

memory leak

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

10

사례 1: Linux Kernel

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... //
err:
 free(in);
 free(out);
 return;

오류 발견에서 수정까지 총 10개월 소요

11

사례 1: Linux Kernel

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);
out = NULL;
in = malloc(2);
if (in == NULL) {
 out = NULL;
 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);
 in = NULL;
 goto err;
}
... //
err:
 free(in);
 free(out);
 return;

수동 디버깅의 문제 3:
오류는 제거했지만 코드 품질이 떨어짐

오류 발견에서 수정까지 총 10개월 소요

11

사례 1: Linux Kernel

SAVER: 메모리 오류 자동 수정기

12

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in);
 free(out);
 return;

✓개발생산성↑
✓SW품질↑
✓안전성 보장

in = malloc(1);
out = malloc(1);
... // use in, out
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in); // double-free
 free(out);// double-free
 return;

SAVER

IC
SE 2020

사례 2: Memory Leak in Swoole

13

1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

Memory Leak:
An object allocated at line 2
becomes unreachable after line 7

사례 2: Memory Leak in Swoole

13

1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

정상 실행 경로

col

col)

*data)

data;

Memory Leak:
An object allocated at line 2
becomes unreachable after line 7

사례 2: Memory Leak in Swoole

13

1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

Memory Leak:
An object allocated at line 2
becomes unreachable after line 7

사례 2: Memory Leak in Swoole

13

1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

Memory leak

col

col)

*data)

Memory Leak:
An object allocated at line 2
becomes unreachable after line 7

사례 2: Memory Leak in Swoole

13

1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

Memory Leak:
An object allocated at line 2
becomes unreachable after line 7

if ((int ret = swHashMap_add(table->columns, ..., col)) == SW_ERR)

free(p);

return ret;

SAVER

사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free

사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free

cleanup

new

o1

사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free

cleanup

new

o1

cleanup

new

firsto1

사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free

cleanup

new

o1

cleanup

new

firsto1

cleanup

first new

o1 o2

사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free

cleanup

new

o1

cleanup

new

firsto1

cleanup

first new

o1 o2

cleanup

first new

o1 o2

사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free

cleanup

new

o1

cleanup

new

firsto1

cleanup

first new

o1 o2

cleanup

first new

o1 o2

cleanup

first new

o1 o2 o3

SAVER가 생성한 패치

15

임시 변수를 도입해서 해제 되기
전에 필요한 값을 기억

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 } (포인터 접근없이) 필요한 값을 읽음

SAVER 성능

16

Infer SAVER FootPatch [60]

Program kLoC #T #F Pre(s) Fix(s) GT �T �T �T GF �F Fix(s) GT �T �T �T GF �F

rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
flex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

10
programs
(2-320K)

96
true alarms

66
false alarms

SAVER 성능

16

Infer SAVER FootPatch [60]

Program kLoC #T #F Pre(s) Fix(s) GT �T �T �T GF �F Fix(s) GT �T �T �T GF �F

rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
flex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

10
programs
(2-320K)

96
true alarms

66
false alarms

SAVER
(KU, ICSE’20)

패치 생성: 72 (75%)
(완벽: 71, 안전: 1, 치명: 0)

SAVER 성능

16

Infer SAVER FootPatch [60]

Program kLoC #T #F Pre(s) Fix(s) GT �T �T �T GF �F Fix(s) GT �T �T �T GF �F

rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
flex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

10
programs
(2-320K)

96
true alarms

66
false alarms

SAVER
(KU, ICSE’20)

패치 생성: 72 (75%)
(완벽: 71, 안전: 1, 치명: 0)

FootPatch
(CMU, ICSE’18)

패치 생성: 26 (27%)
(완벽: 19, 안전: 2, 치명: 5)

SAVER 성능

16

Infer SAVER FootPatch [60]

Program kLoC #T #F Pre(s) Fix(s) GT �T �T �T GF �F Fix(s) GT �T �T �T GF �F

rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
flex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

10
programs
(2-320K)

96
true alarms

66
false alarms

SAVER
(KU, ICSE’20)

패치 생성: 72 (75%)
(완벽: 71, 안전: 1, 치명: 0)

FootPatch
(CMU, ICSE’18)

패치 생성: 26 (27%)
(완벽: 19, 안전: 2, 치명: 5)

SAVER
(KU, ICSE’20)

패치 생성: 0

SAVER 성능

16

Infer SAVER FootPatch [60]

Program kLoC #T #F Pre(s) Fix(s) GT �T �T �T GF �F Fix(s) GT �T �T �T GF �F

rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
flex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

10
programs
(2-320K)

96
true alarms

66
false alarms

SAVER
(KU, ICSE’20)

패치 생성: 72 (75%)
(완벽: 71, 안전: 1, 치명: 0)

FootPatch
(CMU, ICSE’18)

패치 생성: 26 (27%)
(완벽: 19, 안전: 2, 치명: 5)

SAVER
(KU, ICSE’20)

패치 생성: 0

FootPatch
(CMU, ICSE’18)

패치 생성: 26
(안전: 1, 치명: 25)

SAVER 작동 원리

17

Exact Cover Problem
(NP-complete)

in = malloc(1);
out = malloc(1);
... //
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

 goto err;
}

out = malloc(2);
if (out == NULL) {
 free(in);

 goto err;
}
... // use in, out
err:
 free(in); // double-free
 free(out);// double-free
 return;

in = malloc(1);
out = malloc(1);
... //
free(out);
free(in);

in = malloc(2);
if (in == NULL) {

goto err;
}
free(out);
out = malloc(2);
if (out == NULL) {

free(in);

goto err;
}
... // use in, out
err:
 free(in);
 free(out);

return;

정적
분석 SMT

Null Pointer Exceptions (NPEs)

• Java에서 가장 흔히 발생하는 오류

• 안드로이드 exception 가운데 약 40%

• Mozila, Apache 메모리 오류 중 약 37%

18

Apache NPE Fix Commits (5월 15일) Apache NPE Fix Commits (12월 10일)

Apache 재단에서
1년동안 약 1000
건의 NPE 수정

Null Pointer Exception…

챌린지: 올바른 NPE 패치?

19

Null Pointer Exception…

챌린지: 올바른 NPE 패치?

19

…

Null Pointer Exception…

챌린지: 올바른 NPE 패치?

19

Null Pointer Exception…

챌린지: 올바른 NPE 패치?

19

Null Pointer Exception…

챌린지: 올바른 NPE 패치?

19

Null Pointer Exception…

챌린지: 올바른 NPE 패치?

19

기존 기술: 오류 수정 명세로 테스트 케이스가 주어진다고 가정

=> NPEX: Repairing NPEs without Tests

NPEX: Java NPE 자동 수정기

• 정적 분석 및 코드 마이닝을 통해 오류 수정 명세 자동 추론

20

IC
SE 2022

OCaml 프로그래밍 과제에 응용

21

• Arithmetic expressions: type aexp =
 | Const of int
 | Var of string
 | Power of (string * int)
 | Sum of aexp list
 | Times of aexp list

• Symbolic differentiation:
let rec diff (e, x) =
 match e with
 | Const n -> Const 0
 | Var y -> if (x <> y) then Const 0 else Const 1
 | Power (y, n) -> if (x <> y) then Const 0 else Times [Const n; Power (y, n-1)]
 | Sum lst ->
 (match lst with

| [hd] -> diff (hd, x)
| hd::tl -> Sum [diff (hd, x); diff (Sum tl, x)])

 | Times lst ->
 (match lst with

| [hd] -> diff (hd, x)
| hd::tl -> Sum [Times ((diff (hd, x))::tl); Times[hd; diff (Times tl, x)]])

22

OCaml 프로그래밍 과제에 응용

22

OCaml 프로그래밍 과제에 응용

22

OCaml 프로그래밍 과제에 응용

22

OCaml 프로그래밍 과제에 응용

((Sum lst)::tl)

type aexp =

|CONST of int

| VAR of string

| POWER of string * int

| TIMES of aexp list

| SUM of aexp list

type env = (string * int * int) list

let diff : aexp * string -> aexp

= fun (aexp, x) ->

let rec deployEnv : env -> int -> aexp list

= fun env flag ->

match env with

| hd::tl ->

(

match hd with

|(x, c, p) ->

if (flag = 0 && c = 0) then deployEnv tl flag

else if (x = "const" && flag = 1 && c = 1) then deployEnv tl flag

else if (p = 0) then (CONST c)::(deployEnv tl flag)

else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

)

| [] -> []

in

let rec updateEnv : (string * int * int) -> env -> int -> env

= fun elem env flag ->

match env with

| (hd::tl) ->

(

match hd with

| (x, c, p) ->

(

match elem with

|(x2, c2, p2) ->

if (flag = 0) then

if (x = x2 && p = p2) then (x, (c + c2), p)::tl

else hd::(updateEnv elem tl flag)

else

if (x = x2) then (x, (c*c2), (p + p2))::tl

else hd::(updateEnv elem tl flag)

)

)

| [] -> elem::[]

in

let rec doDiff : aexp * string -> aexp

= fun (aexp, x) ->

match aexp with

| CONST _ -> CONST 0

| VAR v ->

if (x = v) then CONST 1

else CONST 0

| POWER (v, p) ->

if (p = 0) then CONST 0

else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

else CONST 0

| TIMES lst ->

(

match lst with

(

match (hd, diff_hd, tl, diff_tl) with

| (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

| (CONST p, _, _, CONST q) ->

if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

else SUM [CONST(p*q); TIMES(diff_hd::tl)]

| (_, CONST s, [CONST r], _) ->

if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

| _ ->

if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

)

| [] -> CONST 0

)

| SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

in

let rec simplify : aexp -> env -> int -> aexp list

= fun aexp env flag ->

match aexp with

| SUM lst ->

(

match lst with

| (CONST c)::tl -> simplify (SUM tl) (updateEnv ("const", c, 0) env 0) 0

| (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

| (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

| (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

| (TIMES lst)::tl ->

(

let l = simplify (TIMES lst) [] 1 in

match l with

| h::t ->

if (t = []) then List.append l (simplify (SUM tl) env 0)

else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

| [] -> []

)

| [] -> deployEnv env 0

)

| TIMES lst ->

(

match lst with

| (CONST c)::tl -> simplify (TIMES tl) (updateEnv ("const", c, 0) env 1) 1

| (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

| (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

| (SUM lst)::tl ->

(

let l = simplify (SUM lst) [] 0 in

match l with

| h::t ->

if (t = []) then List.append l (simplify (TIMES tl) env 1)

else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

| [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

)

| (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

| [] -> deployEnv env 1

)

in

let result = doDiff (aexp, x) in

match result with

| SUM _ -> SUM (simplify result [] 0)

| TIMES _ -> TIMES (simplify result [] 1)

| _ -> result

FixML:

마무리

23

• C/C++ 메모리 오류 자동 수정 [FSE’18, ICSE’20]

• Java 널 포인터 오류 자동 수정 [ICSE’22]

• Python 타입 오류 자동 수정 (in progress)

• Solidity 보안 오류 자동 수정 (in progress)

• …

• OCaml 프로그래밍 과제 자동 수정 [OOPSLA’18, FSE’21]

감사합니다

