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자동

정교 신속

“Push-button” solution 
(esp., no test cases)

High fix rate &  
No false patches

Fast enough for  
real-world SW

=> 주요 프로그래밍 언어 / 오류에 특화



연구 진행 상황

• C/C++ 메모리 오류 자동 수정 [FSE’18, ICSE’20]

• Java 널 포인터 오류 자동 수정 [ICSE’22]

• Python 타입 오류 자동 수정 (in progress)

• Solidity 보안 오류 자동 수정 (in progress)

• …

• OCaml 프로그래밍 과제 자동 수정 [OOPSLA’18, OOSLA’19, FSE’21]

5



메모리 관리 오류

6

• 메모리 관리를 수동으로 하는 언어(e.g., C/C++)에서 발생:

• Memory-leak (CWE-401): 메모리를 너무 늦게 해제

• Use-after-free (CWE-416): 메모리를 너무 빨리 해제

• Double-free (CWE-415): 메모리를 여러번 해제

p = malloc(1); 
... 
return;

Memory-Leak

p = malloc(1); 
... 
free(p); 
... 
free(p);

Double-Free

p = malloc(1); 
... 
free(p); 
...  
use(p);

Use-After-Free



메모리 관리 오류

• C/C++ 프로그램에서 가장 빈번하게 발생

7

Repository #commits ML DF UAF Total *-overflow

linux 721,119 3,740 821 1,986 6,363 5,092

openssl 21,009 220 36 12 264 61

numpy 17,008 58 2 2 59 53

php 105,613 1,129 148 197 1,449 649

git 49,475 350 19 95 442 258

• 소프트웨어 결함의 주요 원인이지만 정확한 수정이 까다로움



사례 1: Linux Kernel

8

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;



사례 1: Linux Kernel

8

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

메모리 할당



사례 1: Linux Kernel

8

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

메모리 할당

메모리 해제



사례 1: Linux Kernel

8

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

메모리 할당

메모리 해제

메모리 중복 해제 
(double-free)



사례 1: Linux Kernel

8

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

메모리 할당

메모리 해제

메모리 중복 해제 
(double-free)



in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;
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in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

수동 디버깅의 문제 1: 
오류가 제거되었는지 확신하기 어려움

9

사례 1: Linux Kernel



9개월 후에 다시 오류 수정을 시도

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

10

사례 1: Linux Kernel



9개월 후에 다시 오류 수정을 시도

수동 디버깅의 문제 2: 
오류 수정 과정에서 새로운 오류가 발생

memory leak

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

10
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in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 
out = NULL; 
in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... //  
err: 
  free(in); 
  free(out); 
  return;

오류 발견에서 수정까지 총 10개월 소요

11

사례 1: Linux Kernel



in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 
out = NULL; 
in = malloc(2); 
if (in == NULL) { 
  out = NULL; 
  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  free(in); 
  in = NULL; 
  goto err; 
} 
... //  
err: 
  free(in); 
  free(out); 
  return;

수동 디버깅의 문제 3:  
오류는 제거했지만 코드 품질이 떨어짐

오류 발견에서 수정까지 총 10개월 소요

11

사례 1: Linux Kernel



SAVER: 메모리 오류 자동 수정기

12

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 
  return;

✓개발생산성↑
✓SW품질↑
✓안전성 보장

in = malloc(1); 
out = malloc(1); 
... // use in, out 
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); // double-free 
  free(out);// double-free 
  return;

SAVER

IC
SE 2020



사례 2: Memory Leak in Swoole

13

1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

Memory Leak:
An object allocated at line 2 
becomes unreachable after line 7
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사례 2: Memory Leak in Swoole
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1 int swTableColumn_add(swTable *table, ...) {

2 col = sw_malloc(sizeof(swTableColumn));

3 if (type == SW_TABLE_INT)

4 col->size = 1;

5 col->index = table->size;

6 return swHashMap_add(table->columns, ..., col);

7 }

8

9 int swHashMap_add(swHashMap *hmap, ..., void *data) {

10 node = sw_malloc(sizeof(swHashMap_node));

11 if (node == NULL)

12 return SW_ERR;

13 node->data = data;

14 swHashMap_node_add(hmap, ... node);

15 return SW_OK;

16 }

Memory Leak:
An object allocated at line 2 
becomes unreachable after line 7

if ((int ret = swHashMap_add(table->columns, ..., col)) == SW_ERR)

free(p);

return ret;

SAVER



사례 3: Use-After-Free in Binutils

14

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 }

use-after-free
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SAVER가 생성한 패치
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임시 변수를 도입해서 해제 되기 
전에 필요한 값을 기억

1 struct node *cleanup; // list of objects to be deallocated

2 struct node *first = NULL;

3 for (...) {

4 struct node *new = xmalloc(sizeof(*new));

5 make_cleanup(new); // add new to the cleanup list

6 new->name = ...;

7 ...

8 if (...) {

9 first = new;

10 (+) tmp = first->name;

11 continue;

12 }

13 /* potential use-after-free: `first->name` */

14 (-) if (first == NULL || new->name != first->name)

15 (+) if (first == NULL || new->name != tmp)

16 continue;

17 do_cleanups(); // deallocate all objects in cleanup

18 } (포인터 접근없이) 필요한 값을 읽음



SAVER 성능
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Infer SAVER FootPatch [60]

Program kLoC #T #F Pre(s) Fix(s) GT �T �T �T GF �F Fix(s) GT �T �T �T GF �F

rappel (ad8efd7) 2.2 1 0 2.2 0.0 1 1 0 0 0 0 8.9 1 1 0 0 0 0
flex (d3de49f) 22.3 3 4 26.3 2.5 0 0 0 0 0 0 51.0 0 0 0 0 1 1
WavPack (22977b2) 31.2 1 2 44.6 22.1 0 0 0 0 0 0 67.9 0 0 0 0 2 2
Swoole (a4256e4) 43.0 15 3 88.5 10.1 11 11 0 0 0 0 392.5 9 7 0 2 1 1
lxc (72cc48f) 49.9 3 5 230.6 5.8 3 3 0 0 0 0 179.6 0 0 0 0 1 1
p11-kit (ead7ara) 62.9 33 9 646.2 288.8 24 24 0 0 0 0 566.4 8 7 1 0 2 2
x264 (d4099dd) 73.2 10 0 144.3 9.9 10 10 0 0 0 0 426.9 2 2 0 0 0 0
recutils-1.8 92.0 10 11 144.1 44.4 8 8 0 0 0 0 662.2 3 2 1 0 0 0
inetutils-1.9.4 116.9 4 5 44.8 2.5 4 4 0 0 0 0 182.1 0 0 0 0 0 0
snort-2.9.13 320.8 16 27 2372.0 216.0 11 10 1 0 0 0 4636.4 3 0 0 3 19 18
Total 814.4 96 66 3743.6 602.1 72 71 1 0 0 0 7173.9 26 19 2 5 26 25

10  
programs 
(2-320K)

96  
true alarms

66  
false alarms
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10  
programs 
(2-320K)

96  
true alarms

66  
false alarms

SAVER 
(KU, ICSE’20)

패치 생성: 72 (75%) 
(완벽: 71, 안전: 1, 치명: 0)
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SAVER 작동 원리

17

Exact Cover Problem
(NP-complete)

in = malloc(1); 
out = malloc(1); 
... //  
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

  goto err; 
} 

out = malloc(2); 
if (out == NULL) { 
  free(in); 

  goto err; 
} 
... // use in, out 
err: 
  free(in); // double-free 
  free(out);// double-free 
  return;

in = malloc(1); 
out = malloc(1); 
... //  
free(out); 
free(in); 

in = malloc(2); 
if (in == NULL) { 

goto err; 
} 
free(out); 
out = malloc(2); 
if (out == NULL) { 

free(in); 

goto err; 
} 
... // use in, out 
err: 
  free(in); 
  free(out); 

return;

정적  
분석 SMT



Null Pointer Exceptions (NPEs)

• Java에서 가장 흔히 발생하는 오류

• 안드로이드 exception 가운데 약 40%

• Mozila, Apache 메모리 오류 중 약 37%

18

Apache NPE Fix Commits (5월 15일) Apache NPE Fix Commits (12월 10일)

Apache 재단에서 
1년동안 약 1000
건의 NPE 수정



Null Pointer Exception…

챌린지: 올바른 NPE 패치?
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기존 기술: 오류 수정 명세로 테스트 케이스가 주어진다고 가정

=> NPEX: Repairing NPEs without Tests



NPEX: Java NPE 자동 수정기

• 정적 분석 및 코드 마이닝을 통해 오류 수정 명세 자동 추론

20

IC
SE 2022



OCaml 프로그래밍 과제에 응용

21

• Arithmetic expressions: type aexp =  
  | Const of int 
  | Var of string 
  | Power of (string * int) 
  | Sum of aexp list 
  | Times of aexp list

• Symbolic differentiation:
let rec diff (e, x) =  
  match e with 
  | Const n -> Const 0 
  | Var y -> if (x <> y) then Const 0 else Const 1 
  | Power (y, n) -> if (x <> y) then Const 0 else Times [Const n; Power (y, n-1)] 
  | Sum lst -> 
    (match lst with 

| [hd] -> diff (hd, x) 
| hd::tl -> Sum [diff (hd, x); diff (Sum tl, x)])  

  | Times lst -> 
    (match lst with 

| [hd] -> diff (hd, x) 
| hd::tl -> Sum [Times ((diff (hd, x))::tl); Times[hd; diff (Times tl, x)]])
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OCaml 프로그래밍 과제에 응용

((Sum lst)::tl)

type aexp =

|CONST of int

| VAR of string

| POWER of string * int

| TIMES of aexp list

| SUM of aexp list

type env = (string * int * int) list

let diff : aexp * string -> aexp

= fun (aexp, x) ->

let rec deployEnv : env -> int -> aexp list

= fun env flag ->

match env with

| hd::tl ->

(

match hd with

|(x, c, p) ->

if (flag = 0 && c = 0) then deployEnv tl flag

else if (x = "const" && flag = 1 && c = 1) then deployEnv tl flag

else if (p = 0) then (CONST c)::(deployEnv tl flag)

else if (c = 1 && p = 1) then (VAR x)::(deployEnv tl flag)

else if (p = 1) then TIMES[CONST c; VAR x]::(deployEnv tl flag)

else if (c = 1) then POWER(x, p)::(deployEnv tl flag)

else TIMES [CONST c; POWER(x, p)]::(deployEnv tl flag)

)

| [] -> []

in

let rec updateEnv : (string * int * int) -> env -> int -> env

= fun elem env flag ->

match env with

| (hd::tl) ->

(

match hd with

| (x, c, p) ->

(

match elem with

|(x2, c2, p2) ->

if (flag = 0) then

if (x = x2 && p = p2) then (x, (c + c2), p)::tl

else hd::(updateEnv elem tl flag)

else

if (x = x2) then (x, (c*c2), (p + p2))::tl

else hd::(updateEnv elem tl flag)

)

)

| [] -> elem::[]

in

let rec doDiff : aexp * string -> aexp

= fun (aexp, x) ->

match aexp with

| CONST _ -> CONST 0

| VAR v ->

if (x = v) then CONST 1

else CONST 0

| POWER (v, p) ->

if (p = 0) then CONST 0

else if (x = v) then TIMES ((CONST p)::POWER (v, p-1)::[])

else CONST 0

| TIMES lst ->

(

match lst with

(

match (hd, diff_hd, tl, diff_tl) with

| (CONST p, CONST s, [CONST r], CONST q) -> CONST (p*q + r*s)

| (CONST p, _, _, CONST q) ->

if (diff_hd = CONST 0 || tl = [CONST 0]) then CONST (p*q)

else SUM [CONST(p*q); TIMES(diff_hd::tl)]

| (_, CONST s, [CONST r], _) ->

if (hd = CONST 0 || diff_tl = CONST 0) then CONST (r*s)

else SUM [TIMES [hd; diff_tl]; CONST(r*s)]

| _ ->

if (hd = CONST 0 || diff_tl = CONST 0) then TIMES(diff_hd::tl)

else if (tl = [CONST 0] || diff_hd = CONST 0) then TIMES [hd; diff_tl]

else SUM [TIMES [hd; diff_tl]; TIMES (diff_hd::tl)]

)

| [] -> CONST 0

)

| SUM lst -> SUM(List.map (fun aexp -> doDiff(aexp, x)) lst)

in

let rec simplify : aexp -> env -> int -> aexp list

= fun aexp env flag ->

match aexp with

| SUM lst ->

(

match lst with

| (CONST c)::tl -> simplify (SUM tl) (updateEnv ("const", c, 0) env 0) 0

| (VAR x)::tl -> simplify (SUM tl) (updateEnv (x, 1, 1) env 0) 0

| (POWER (x, p))::tl -> simplify (SUM tl) (updateEnv (x, 1, p) env 0) 0

| (SUM lst)::tl -> simplify (SUM (List.append lst tl)) env 0

| (TIMES lst)::tl ->

(

let l = simplify (TIMES lst) [] 1 in

match l with

| h::t ->

if (t = []) then List.append l (simplify (SUM tl) env 0)

else List.append (TIMES l::[]) (simplify (SUM tl) env 0)

| [] -> []

)

| [] -> deployEnv env 0

)

| TIMES lst ->

(

match lst with

| (CONST c)::tl -> simplify (TIMES tl) (updateEnv ("const", c, 0) env 1) 1

| (VAR x)::tl -> simplify (TIMES tl) (updateEnv (x, 1, 1) env 1) 1

| (POWER (x, p))::tl -> simplify (TIMES tl) (updateEnv (x, 1, p) env 1) 1

| (SUM lst)::tl ->

(

let l = simplify (SUM lst) [] 0 in

match l with

| h::t ->

if (t = []) then List.append l (simplify (TIMES tl) env 1)

else List.append (SUM l::[]) (simplify (TIMES tl) env 1)

| [] -> [] (* Feedback : Replace [] by ((Sum lst) :: tl) *)

)

| (TIMES lst)::tl -> simplify (TIMES (List.append lst tl)) env 1

| [] -> deployEnv env 1

)

in

let result = doDiff (aexp, x) in

match result with

| SUM _ -> SUM (simplify result [] 0)

| TIMES _ -> TIMES (simplify result [] 1)

| _ -> result

FixML:



마무리
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• C/C++ 메모리 오류 자동 수정 [FSE’18, ICSE’20]

• Java 널 포인터 오류 자동 수정 [ICSE’22]

• Python 타입 오류 자동 수정 (in progress)

• Solidity 보안 오류 자동 수정 (in progress)

• …

• OCaml 프로그래밍 과제 자동 수정 [OOPSLA’18, FSE’21]

감사합니다


